452 research outputs found

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface

    Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open boundary conditions approach

    Full text link
    We present a time-dependent study of electron transport through a strongly correlated quantum dot. The time-dependent current is obtained with the multiple-probe battery method, while adiabatic lattice density functional theory in the Bethe ansatz local-density approximation to the Hubbard model describes the dot electronic structure. We show that for a certain range of voltages the quantum dot can be driven into a dynamical state characterized by regular current oscillations. This is a manifestation of a recently proposed dynamical picture of Coulomb blockade. Furthermore, we investigate how the various approximations to the electron-electron interaction affect the line-shapes of the Coulomb peaks and the I-V characteristics. We show that the presence of the derivative discontinuity in the approximate exchange-correlation potential leads to significantly different results compared to those obtained at the simpler Hartree level of description. In particular, a negative differential conductance (NDC) in the I-V characteristics is observed at large bias voltages and large Coulomb interaction strengths. We demonstrate that such NDC originates from the combined effect of electron-electron interaction in the dot and the finite bandwidth of the electrodes.Comment: 10 pages, 7 figure

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Towards Better Integrators for Dissipative Particle Dynamics Simulations

    Get PDF
    Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.Comment: 4 pages, 3 figures, 2 tables, accepted for publication in Phys. Rev. E (Rapid Communication), tentative publication issue: 01 Dec 200

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Interfacing a quantum dot spin with a photonic circuit

    Get PDF
    A scalable optical quantum information processor is likely to be a waveguide circuit with integrated sources, detectors, and either deterministic quantum-logic or quantum memory elements. With microsecond coherence times, ultrafast coherent control, and lifetime-limited transitions, semiconductor quantum-dot spins are a natural choice for the static qubits. However their integration with flying photonic qubits requires an on-chip spin-photon interface, which presents a fundamental problem: the spin-state is measured and controlled via circularly-polarised photons, but waveguides support only linear polarisation. We demonstrate here a solution based on two orthogonal photonic nanowires, in which the spin-state is mapped to a path-encoded photon, thus providing a blue-print for a scalable spin-photon network. Furthermore, for some devices we observe that the circular polarisation state is directly mapped to orthogonal nanowires. This result, which is physically surprising for a non-chiral structure, is shown to be related to the nano-positioning of the quantum-dot with respect to the photonic circuit

    Critical Exponents of the Fully Frustrated 2-D Xy Model

    Full text link
    We present a detailed study of the critical properties of the 2-D XY model with maximal frustration in a square lattice. We use extensive Monte Carlo simulations to study the thermodynamics of the spin and chiral degrees of freedom, concentrating on their correlation functions. The gauge invariant spin-spin correlation functions are calculated close to the critical point for lattice sizes up to 240×240240\times 240; the chiral correlation functions are studied on lattices up to 96×9696\times 96. We find that the critical exponents of the spin phase transition are ν=0.3069\nu=0.3069, and η=0.1915\eta=0.1915, which are to be compared with the unfrustrated XY model exponents ν=1/2\nu=1/2 and η=0.25\eta=0.25. We also find that the critical exponents of the chiral transition are νχ=0.875\nu_{\chi}=0.875, 2β=0.19362\beta=0.1936, 2γ=1.822\gamma= 1.82, and 2γ ′=1.0252\gamma\>\prime=1.025, which are different from the expected 2-D Ising critical exponents. The spin-phase transition occurs at TU(1)=0.446T_{U(1)}=0.446 which is about 7\% above the estimated chiral critical temperature TZ2=0.4206T_{Z_{2}}= 0.4206. However, because of the size of the statistical errors, it is difficult to decide with certainty whether the transitions occur at the same or at slightly different temperatures. Finally, the jump in the helicity modulus in the fully frustrated system is found to be about 23\% below the unfrustrated universal value. The most important consequence of these results is that the fully frustrated XY model appears to be in a novel universality class. Recent successful comparisons of some of these results with experimental data are also briefly discussed. (TO APPEAR IN PRB)Comment: 47 pages (PHYZZX

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    <i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging

    Get PDF
    Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a &lt;i&gt;C-elegans&lt;/i&gt; model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders
    • …
    corecore